skip to main content


Search for: All records

Creators/Authors contains: "Lopez, Steven A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tuning strained alkyne reactivity via organic synthesis has evolved into a burgeoning field of study largely focused on cyclooctyne, wherein physical organic chemistry helps guide rational molecular design to produce molecules with intriguing properties. Concurrent research in the field of carbon nanomaterials has produced new types of strained alkyne macrocycles, such as cycloparaphenyleneacetylenes, that possess uniquely curved aromatic π systems but hover on the edge of stability. In 2018, we introduced a strained alkyne scaffold that marries the synthetic accessibility and stability of cyclooctyne with the curved π system of carbon nanomaterials. These molecules are strained alkyne-containing cycloparaphenylenes (or [n+1]CPPs), which have been shown to possess size-dependent reactivity as well as the classic characteristics of the unfunctionalized parent CPP, such as a tunable HOMO–LUMO gap and bright fluorescence for large sizes. Herein, we elaborate further on this scaffold, introducing two modifications to the original design and fully characterizing the kinetics of the strain-promoted azide–alkyne cycloaddition (SPAAC) for each [n+1]CPP with a model azide. Additionally, we explain how electronic (the incorporation of fluorine atoms) and strain (a meta linkage which heightens local strain at the alkyne) modulations affect SPAAC reactivity via the distortion–interaction computational model. Altogether, these results indicate that through a modular synthesis and rational chemical design, we have developed a new family of tunable and inherently fluorescent strained alkyne carbon nanomaterials. 
    more » « less
  2. Azoarene photoswitches are versatile molecules that interconvert from their E-isomer to their Z-isomer with light. Azobenzene is a prototypical photoswitch but its derivatives can be poorly suited for in vivo applications such as photopharmacology due to undesired photochemical reactions promoted by ultraviolet light and the relatively short half-life (t1/2) of the Z-isomer (2 days). Experimental and computational studies suggest that these properties (λmax of the E isomer and t1/2 of the Z-isomer) are inversely related. We identified isomeric azobisthiophenes and azobisfurans from a high-throughput screening study of 1540 azoarenes as photoswitch candidates with improved λmax and t1/2 values relative to azobenzene. We used density functional theory to predict the activation free energies and vertical excitation energies of the E- and Z-isomers of 2,2- and 3,3-substituted azobisthiophenes and azobisfurans. The half-lives depend on whether the heterocycles are π-conjugated or cross-conjugated with the diazo π-bond. The 2,2-substituted azoarenes both have t1/2 values on the scale of 1 hour, while the 3,3-analogues have computed half-lives of 40 and 230 years (thiophene and furan, respectively). The 2,2-substituted heteroazoarenes have significantly higher λmax absorptions than their 3,3-substituted analogues: 76 nm for azofuran and 77 nm for azothiophene. 
    more » « less
  3. Abstract

    Benzene fluorination increases chemoselectivities for Dewar‐benzenes via 4π‐disrotatory electrocyclization. However, the origin of the chemo‐ and regioselectivities of fluorobenzenes remains unexplained because of the experimental limitations in resolving the excited‐state structures on ultrafast timescales. The computational cost of multiconfigurational nonadiabatic molecular dynamics simulations is also currently cost‐prohibitive. We now provide high‐fidelity structural information and reaction outcome predictions with machine‐learning‐accelerated photodynamics simulations of a series of fluorobenzenes, C6F6‐nHn, n=0–3, to study their S1→S0decay in 4 ns. We trained neural networks with XMS‐CASPT2(6,7)/aug‐cc‐pVDZ calculations, which reproduced the S1absorption features with mean absolute errors of 0.04 eV (<2 nm). The predicted nonradiative decay constants for C6F4H2, C6F6, C6F3H3, and C6F5H are 116, 60, 28, and 12 ps, respectively, in broad qualitative agreement with the experiments. Our calculations show that a pseudo Jahn–Teller distortion of fluorinated benzenes leads to an S1local‐minimum region that extends the excited‐state lifetimes of fluorobenzenes. The pseudo Jahn–Teller distortions reduce when fluorination decreases. Our analysis of the S1dynamics shows that the pseudo‐Jahn–Teller distortions promote an excited‐statecis‐transisomerization of a πC‐Cbond. We characterized the surface hopping points from our NAMD simulations and identified instantaneous nuclear momentum as a factor that promotes the electrocyclizations.

     
    more » « less
  4. Recently discovered diamond nanothreads offer a stiff, sp 3 -hybridized backbone unachievable in conventional polymer synthesis that is formed through the solid-state pressure-induced polymerization of simple aromatics. This method enables monomeric A-B alternation to fully translate from co-crystal design to polymer backbone in a sequence-defined manner. Here, we report the compression of aryl:perfluoroaryl (Ar/ArF) co-crystals containing –OH and –CHO functional groups. We analyze the tolerance of these functional groups to polymerization, explore the possibility of keto–enol tautomerization, and compare the reaction outcomes of targeted solid-state Ar/ArF design on nanothread formation. Two new co-crystals comprising phenol:pentafluorobenzaldehyde (ArOH:ArFCHO) and benzaldehdye:pentafluorophenol (ArCHO:ArFOH) were synthesized through slow solvent evaporation. Analysis of the single-crystal structures revealed different hydrogen bonding patterns between the –OH and –CHO in each solid (tape and orthogonal dimers, respectively), in addition to markedly different π–π stacking distances within the Ar/ArF synthons. In situ Raman spectroscopy was used to monitor the compression of each co-crystal to 21 GPa and illustrated peak shifts for the –OH and –CHO stretching regions during compression. Photoluminescence corresponding to polymerization appeared at a lower pressure for the co-crystal with the smallest π–π stacking distance. Nevertheless, the recovered solid with the larger centroid : centroid and centroid : plane π–π stacking distances featured a diffraction ring consistent with the anticipated dimensions of a co-crystal-derived nanothread packing, indicating that both functional group interactions and parallel stacking affect the pressure-induced polymerization to form nanothreads. IR spectroscopy of the recovered samples revealed large shifts in the –OH & –CHO stretching regions, particularly noticable for ArCHO:ArFOH, which may reflect geometrical constraints associated with forming a rigid thread backbone under pressure. Simulation suggests that hydrogen bonding networks may affect the relative compressibility of the co-crystal along a thread-forming axis to modulate the propensity for nanothread formation. 
    more » « less
  5. null (Ed.)